😶‍🌫️
Psych
  • Preface
  • [4/9/2025] A One-Stop Calculator and Guide for 95 Effect-Size Variants
  • [4/9/2025] the people make the place
  • [4/9/2025] Personality predicts things
  • [3/31/2025] Response surface analysis with multilevel data
  • [3/11/2025] A Complete Guide to Natural Language Processing
  • [3/4/2025] Personality - Self and Identity
  • [3/1/2025] Updating Vocational Interests Information
  • [2/25/2025] Abilities & Skills
  • [2/22/2025] APA table format
  • [2/19/2025] LLM that replace human participants can harmfully misportray and flatt
  • [2/18/2025] Research Methods Knowledge Base
  • [2/17/2025] Personality - Motives/Interests
  • [2/11/2025] Trait structure
  • [2/10/2025] Higher-order construct
  • [2/4/2025] RL for CAT
  • [2/4/2025] DoWhy | An end-to-end library for causal inference
  • [2/4/2025] DAGitty — draw and analyze causal diagrams
  • [2/2/2025] Personality States
  • [2/2/2025] Psychometric Properties of Automated Video Interview Competency Assessments
  • [2/2/2025] How to diagnose abhorrent science
  • [1/28/2025] LLM and personality/interest items
  • [1/28/2025] Personality - Dispositions
  • [1/28/2025] Causal inference in statistics
  • [1/27/2025] Personality differences between birth order categories and across sibship sizes
  • [1/27/2025] nomological network meta-analysis.
  • [1/25/2025] Classic Papers on Scale Development/Validation
  • [1/17/2025] Personality Reading
  • [1/15/2025] Artificial Intelligence: Redefining the Future of Psychology
  • [1/13/2025] R for Psychometics
  • [12/24/2024] Comparison of interest congruence indices
  • [12/24/2024] Most recent article on interest fit measures
  • [12/24/2024] Grammatical Redundancy in Scales: Using the “ConGRe” Process to Create Better Measures
  • [12/24/2024] Confirmatory Factor Analysis with Word Embeddings
  • [12/24/2024] Can ChatGPT Develop a Psychometrically Sound Situational Judgment Test?
  • [12/24/2024] Using NLP to replace human content coders
  • [11/21/2024] AI Incident Database
  • [11/20/2024] Large Language Model-Enhanced Reinforcement Learning
  • [11/05/2024] Self-directed search
  • [11/04/2024] Interview coding and scoring
  • [11/04/2024] What if there were no personality factors?
  • [11/04/2024] BanditCAT and AutoIRT
  • [10/29/2024] LLM for Literature/Survey
  • [10/27/2024] Holland's Theory of Vocational Choice and Adjustment
  • [10/27/2024] Item Response Warehouse
  • [10/26/2024] EstCRM - the Samejima's Continuous IRT Model
  • [10/23/2024] Idiographic Personality Gaussian Process for Psychological Assessment
  • [10/23/2024] The experience sampling method (ESM)
  • [10/21/2024] Ecological Momentary Assessment (EMA)
  • [10/20/2024] Meta-Analytic Structural Equation Modeling
  • [10/20/2024] Structure of vocational interests
  • [10/17/2024] LLMs for psychological assessment
  • [10/16/2024] Can Deep Neural Networks Inform Theory?
  • [10/16/2024] Cognition & Decision Modeling Laboratory
  • [10/14/2024] Time-Invariant Confounders in Cross-Lagged Panel Models
  • [10/13/2024] Polynomial regression
  • [10/13/2024] Bayesian Mixture Modeling
  • [10/10/2024] Response surface analysis (RSA)
  • [10/10/2024] Text-Based Personality Assessment with LLM
  • [10/09/2024] Circular unidimensional scaling: A new look at group differences in interest structure.
  • [10/07/2024] Video Interview
  • [10/07/2024] Relationship between Measurement and ML
  • [10/07/2024] Conscientiousness × Interest Compensation (CONIC) model
  • [10/03/2024] Response modeling methodology
  • [10/02/2024] Conceptual Versus Empirical Distinctions Among Constructs
  • [10/02/2024] Construct Proliferation
  • [09/23/2024] Psychological Measurement Paradigm through Interactive Fiction Games
  • [09/20/2024] A Computational Method to Reveal Psychological Constructs From Text Data
  • [09/18/2024] H is for Human and How (Not) To Evaluate Qualitative Research in HCI
  • [09/17/2024] Automated Speech Recognition Bias in Personnel Selection
  • [09/16/2024] Congruency Effect
  • [09/11/2024] privacy, security, and trust perceptions
  • [09/10/2024] Measurement, Scale, Survey, Questionnaire
  • [09/09/2024] Reporting Systematic Reviews
  • [09/09/2024] Evolutionary Neuroscience
  • [09/09/2024] On Personality Measures and Their Data
  • [09/09/2024] Two Dimensions of Professor-Student Rapport Differentially Predict Student Success
  • [09/05/2024] The SAPA Personality Inventory
  • [09/05/2024] Moderated mediation
  • [09/03/2024] BiGGen Bench
  • [09/02/2024] LMSYS Chatbot Arena
  • [09/02/2024] Introduction to Measurement Theory Chapters 1, 2 (2.1-2.8) and 3.
  • [09/01/2024] HCI measurememt
  • [08/30/2024] Randomization Test
  • [08/30/2024] Interview Quantative Statistical
  • [08/29/2024] Cascading Model
  • [08/29/2024] Introduction: The White House (IS_202)
  • [08/29/2024] Circular unidimensional scaling
  • [08/28/2024] Sex and Gender Differences (Neur_542_Week2)
  • [08/26/2024] Workplace Assessment and Social Perceptions (WASP) Lab
  • [08/26/2024] Computational Organizational Research Lab
  • [08/26/2024] Reading List (Recommended by Bo)
  • [08/20/2024] Illinois NeuroBehavioral Assessment Laboratory (INBAL)
  • [08/14/2024] Quantitative text analysis
  • [08/14/2024] Measuring complex psychological and sociological constructs in large-scale text
  • [08/14/2024] LLM for Social Science Research
  • [08/14/2024] GPT for multilingual psychological text analysis
  • [08/12/2024] Questionable Measurement Practices and How to Avoid Them
  • [08/12/2024] NLP for Interest (from Dan Putka)
  • [08/12/2024] ONet Interest Profiler (Long and Short Scale)
  • [08/12/2024] ONet Interests Data
  • [08/12/2024] The O*NET-SOC Taxonomy
  • [08/12/2024] ML Ratings for O*Net
  • [08/09/2024] Limited ability of LLMs to simulate human psychological behaviours
  • [08/08/2024] A large-scale, gamified online assessment
  • [08/08/2024] Text-Based Traitand Cue Judgments
  • [08/07/2024] Chuan-Peng Lab
  • [08/07/2024] Modern psychometrics: The science of psychological assessment
  • [08/07/2024] Interactive Survey
  • [08/06/2024] Experimental History
  • [08/06/2024] O*NET Research reports
  • [07/30/2024] Creating a psychological assessment tool based on interactive storytelling
  • [07/24/2024] My Life with a Theory
  • [07/24/2024] NLP for Interest Job Ratings
  • [07/17/2024] Making vocational choices
  • [07/17/2024] Taxonomy of Psychological Situation
  • [07/12/2024] PathChat 2
  • [07/11/2024] Using games to understand the mind
  • [07/10/2024] Gamified Assessments
  • [07/09/2024] Poldracklab Software and Data
  • [07/09/2024] Consensus-based Recommendations for Machine-learning-based Science
  • [07/08/2024] Using AI to assess personal qualities
  • [07/08/2024] AI Psychometrics And Psychometrics Benchmark
  • [07/02/2024] Prompt Engineering Guide
  • [06/28/2024] Observational Methods and Qualitative Data Analysis 5-6
  • [06/28/2024] Observational Methods and Qualitative Data Analysis 3-4
  • [06/28/2024] Interviewing Methods 5-6
  • [06/28/2024] Interviewing Methods 3-4
  • [06/28/2024] What is Qualitative Research 3
  • [06/27/2024] APA Style
  • [06/27/2024] Statistics in Psychological Research 6
  • [06/27/2024] Statistics in Psychological Research 5
  • [06/23/2024] Bayesian Belief Network
  • [06/18/2024] Fair Comparisons in Heterogenous Systems Evaluation
  • [06/18/2024] What should we evaluate when we use technology in education?
  • [06/16/2024] Circumplex Model
  • [06/12/2024] Ways of Knowing in HCI
  • [06/09/2024] Statistics in Psychological Research 1-4
  • [06/08/2024] Mathematics for Machine Learning
  • [06/08/2024] Vocational Interests SETPOINT Dimensions
  • [06/07/2024] How's My PI Study
  • [06/06/2024] Best Practices in Supervised Machine Learning
  • [06/06/2024] SIOP
  • [06/06/2024] Measurement, Design, and Analysis: An Integrated Approach (Chu Recommended)
  • [06/06/2024] Classical Test Theory
  • [06/06/2024] Introduction to Measurement Theory (Bo Recommended)
  • [06/03/2024] EDSL: AI-Powered Research
  • [06/03/2024] Perceived Empathy of Technology Scale (PETS)
  • [06/02/2024] HCI area - Quantitative and Qualitative Modeling and Evaluation
  • [05/26/2024] Psychometrics with R
  • [05/26/2024] Programming Grammer Design
  • [05/25/2024] Psychometric Network Analysis
  • [05/23/2024] Item Response Theory
  • [05/22/2024] Nature Human Behaviour (Jan - 20 May, 2024)
  • [05/22/2024] Nature Human Behaviour - Navigating the AI Frontier
  • [05/22/2024] Computer Adaptive Testing
  • [05/22/2024] Personality Scale (Jim Shard)
  • [05/22/2024] Reliability
  • [05/19/2024] Chatbot (Jim Shared)
  • [05/17/2024] GOMS and Keystroke-Level Model
  • [05/17/2024] The Psychology of Human-Computer Interaction
  • [05/14/2024] Computational Narrative (Mark's Group)
  • [05/14/2024] Validity Coding
  • [05/14/2024] LLM as A Evaluator
  • [05/14/2024] Social Skill Training via LLMs (Diyi's Group)
  • [05/14/2024] AI Persona
  • [05/09/2024] Psychological Methods Journal Sample Articles
  • [05/08/2024] Meta-Analysis
  • [05/07/2024] Mturk
  • [05/06/2024] O*NET Reports and Documents
  • [05/04/2024] NLP and Chatbot on Personality Assessment (Tianjun)
  • [05/02/2024] Reads on Construct Validation
  • [04/25/2024] Reads on Validity
  • [04/18/2024] AI for Assessment
  • [04/17/2024] Interest Assessment
  • [04/16/2024] Personality Long Reading List (Jim)
    • Personality Psychology Overview
      • Why Study Personality Assessment
    • Dimensions and Types
    • Reliability
    • Traits: Two Views
    • Validity--Classical Articles and Reflections
    • Validity-Recent Proposals
    • Multimethod Perspective and Social Desirability
    • Paradigm of Personality Assessment: Multivariate
    • Heritability of personality traits
    • Classical Test-Construction
    • IRT
    • Social desirability in scale construction
    • Traits and culture
    • Paradigms of personality assessment: Empirical
    • Comparison of personality test construction strategies
    • Clinical versus Actuarial (AI) Judgement and Diagnostics
    • Decisions: Importance of base rates
    • Paradigms of Personality Assessment: Psychodynamic
    • Paradigms of Assessment: Interpersonal
    • Paradigms of Personality Assessment: Personological
    • Retrospective reports
    • Research Paradigms
    • Personality Continuity and Change
Powered by GitBook
On this page
  • Navigating the AI frontier
  • World View & Correspondence
  • Comment
  • Perspective

[05/22/2024] Nature Human Behaviour - Navigating the AI Frontier

Previous[05/22/2024] Nature Human Behaviour (Jan - 20 May, 2024)Next[05/22/2024] Computer Adaptive Testing

Last updated 1 year ago

Navigating the AI frontier

The rapid development of generative AI has brought about a paradigm shift in content creation, knowledge representation and communication. This hot generative AI summer has created a lot of excitement, as well as disruption and concern. This Focus explores the new opportunities AI tools offer for science and society. Our authors also confront the numerous challenges intelligent machines pose and explore strategies to tackle them.

World View & Correspondence

Large language models are capable of impressive feats, but the job of scientific review requires more than the statistics of published work can provide.

In Japan, people express gratitude towards technology and this helps them to achieve balance. Yet, dominant narratives teach us that anthropomorphizing artificial intelligence (AI) is not healthy.

Comment

Generative artificial intelligence (AI) tools have made it easy to create realistic disinformation that is hard to detect by humans and may undermine public trust. Some approaches used for assessing the reliability of online information may no longer work in the AI age. We offer suggestions for how research can help to tackle the threats of AI-generated disinformation.

Algorithms are designed to learn user preferences by observing user behaviour. This causes algorithms to fail to reflect user preferences when psychological biases affect user decision making. For algorithms to enhance social welfare, algorithm design needs to be psychologically informed.

Large language models can be construed as ‘cognitive models’, scientific artefacts that help us to understand the human mind. If made openly accessible, they may provide a valuable model system for studying the emergence of language, reasoning and other uniquely human behaviours.

Large language models (LLMs) are impressive technological creations but they cannot replace all scientific theories of cognition. A science of cognition must focus on humans as embodied, social animals who are embedded in material, cultural and technological contexts.

Large language models (LLMs) do not distinguish between fact and fiction. They will return an answer to almost any prompt, yet factually incorrect responses are commonplace. To ensure our use of LLMs does not degrade science, we must use them as zero-shot translators: to convert accurate source material from one form to another.

If mistakes are made in clinical settings, patients suffer. Artificial intelligence (AI) generally — and large language models specifically — are increasingly used in health settings, but the way that physicians use AI tools in this high-stakes environment depends on how information is delivered. AI toolmakers have a responsibility to present information in a way that minimizes harm.

State-of-the-art generative artificial intelligence (AI) can now match humans in creativity tests and is at the cusp of augmenting the creativity of every knowledge worker on Earth. We argue that enriching generative AI applications with insights from the psychological sciences may revolutionize our understanding of creativity and lead to increasing synergies in human–AI hybrid intelligent interfaces.

The rise of generative AI requires a research agenda grounded in the African context to determine locally relevant strategies for its development and use. With a critical mass of evidence on the risks and benefits that generative AI poses to African societies, the scaled use of this new technology might help to reduce rising global inequities.

The current debate surrounding the use and regulation of artificial intelligence (AI) in Brazil has social and political implications. We summarize these discussions, advocate for balance in the current debate around AI and fake news, and caution against preemptive AI regulation.

Perspective

In this Perspective, the authors examine the psychological factors that shape attitudes towards AI tools, while also investigating strategies to overcome resistance when AI systems offer clear benefits.

Defining AI from the user’s perspective

Automation of intelligence. Although traditional automation uses mechanisms, tools or software to automate repetitive tasks, AI involves advanced algorithms to replicate or augment tasks typically associated with human intelligence.

Digital and physical manifestations. AI can be purely digital, such as algorithms that process data, or physically embodied, such as robots or self-driving cars. The digital or physical nature of AI could influence user perceptions and interactions.

User awareness and interaction. Although AI is used on the backend of many technologies, we emphasize AI systems for which users are directly or indirectly aware of their presence. This awareness can range from a general understanding that AI is at work (for example, in a recommendation system) to more specific knowledge about the underlying technology (for example, the use of a particular type of neural network).

Diverse underlying mechanisms. AI can be based on a multitude of algorithms and architectures. Some may be ‘opaque’ or ‘black box’, in which the relationship between inputs and outputs is complex and not easily understandable. Others might be more interpretable, with clear and intuitive mappings (also known as ‘transparent AI’ or ‘white box’). The nature of the underlying AI could in principle influence user trust, understanding and acceptance. Given the enhanced requirements for automating feats of human intelligence, most AI entails opaque algorithms.

Explainability and interpretability. Some AI systems offer explanations for their decisions. Because these explanations are generated by separate algorithms trained to generate rationales for the black-box AI behaviour, they are often approximations and may not fully capture the intricacies of the black-box algorithm itself. The degree to which an AI system is explainable can affect user trust and satisfaction.

Variability in user perceptions. Recognizing that AI spans a vast array of technologies, user perceptions, interactions and attitudes could vary substantially. Factors influencing these perceptions could in principle include the AI’s form, function and design, as well as the context in which it is used.

Artificial intelligence tools and systems are increasingly influencing human culture. Brinkmann et al. argue that these ‘intelligent machines’ are transforming the fundamental processes of cultural evolution: variation, transmission and selection.

LLMs are not ready for editorial work
We need a culturally aware approach to AI
Generative AI poses ethical challenges for open science
Generative AI has a language problem
AI language tools risk scientific diversity and innovation
The Turing test is not a good benchmark for thought in LLMs
AI will never convey the essence of human empathy
We need a decolonized appropriation of AI in Africa
Measuring trustworthiness is crucial for medical AI tools
Research can help to tackle AI-generated disinformation
Human bias in algorithm design
Openly accessible LLMs can help us to understand human cognition
LLMs differ from human cognition because they are not embodied
To protect science, we must use LLMs as zero-shot translators
Presentation matters for AI-generated clinical advice
Creativity in the age of generative AI
A new research agenda for African generative AI
This hot AI summer will impact Brazil’s democracy
Psychological factors underlying attitudes toward AI tools
Machine culture