😶‍🌫️
Psych
  • Preface
  • [4/9/2025] A One-Stop Calculator and Guide for 95 Effect-Size Variants
  • [4/9/2025] the people make the place
  • [4/9/2025] Personality predicts things
  • [3/31/2025] Response surface analysis with multilevel data
  • [3/11/2025] A Complete Guide to Natural Language Processing
  • [3/4/2025] Personality - Self and Identity
  • [3/1/2025] Updating Vocational Interests Information
  • [2/25/2025] Abilities & Skills
  • [2/22/2025] APA table format
  • [2/19/2025] LLM that replace human participants can harmfully misportray and flatt
  • [2/18/2025] Research Methods Knowledge Base
  • [2/17/2025] Personality - Motives/Interests
  • [2/11/2025] Trait structure
  • [2/10/2025] Higher-order construct
  • [2/4/2025] RL for CAT
  • [2/4/2025] DoWhy | An end-to-end library for causal inference
  • [2/4/2025] DAGitty — draw and analyze causal diagrams
  • [2/2/2025] Personality States
  • [2/2/2025] Psychometric Properties of Automated Video Interview Competency Assessments
  • [2/2/2025] How to diagnose abhorrent science
  • [1/28/2025] LLM and personality/interest items
  • [1/28/2025] Personality - Dispositions
  • [1/28/2025] Causal inference in statistics
  • [1/27/2025] Personality differences between birth order categories and across sibship sizes
  • [1/27/2025] nomological network meta-analysis.
  • [1/25/2025] Classic Papers on Scale Development/Validation
  • [1/17/2025] Personality Reading
  • [1/15/2025] Artificial Intelligence: Redefining the Future of Psychology
  • [1/13/2025] R for Psychometics
  • [12/24/2024] Comparison of interest congruence indices
  • [12/24/2024] Most recent article on interest fit measures
  • [12/24/2024] Grammatical Redundancy in Scales: Using the “ConGRe” Process to Create Better Measures
  • [12/24/2024] Confirmatory Factor Analysis with Word Embeddings
  • [12/24/2024] Can ChatGPT Develop a Psychometrically Sound Situational Judgment Test?
  • [12/24/2024] Using NLP to replace human content coders
  • [11/21/2024] AI Incident Database
  • [11/20/2024] Large Language Model-Enhanced Reinforcement Learning
  • [11/05/2024] Self-directed search
  • [11/04/2024] Interview coding and scoring
  • [11/04/2024] What if there were no personality factors?
  • [11/04/2024] BanditCAT and AutoIRT
  • [10/29/2024] LLM for Literature/Survey
  • [10/27/2024] Holland's Theory of Vocational Choice and Adjustment
  • [10/27/2024] Item Response Warehouse
  • [10/26/2024] EstCRM - the Samejima's Continuous IRT Model
  • [10/23/2024] Idiographic Personality Gaussian Process for Psychological Assessment
  • [10/23/2024] The experience sampling method (ESM)
  • [10/21/2024] Ecological Momentary Assessment (EMA)
  • [10/20/2024] Meta-Analytic Structural Equation Modeling
  • [10/20/2024] Structure of vocational interests
  • [10/17/2024] LLMs for psychological assessment
  • [10/16/2024] Can Deep Neural Networks Inform Theory?
  • [10/16/2024] Cognition & Decision Modeling Laboratory
  • [10/14/2024] Time-Invariant Confounders in Cross-Lagged Panel Models
  • [10/13/2024] Polynomial regression
  • [10/13/2024] Bayesian Mixture Modeling
  • [10/10/2024] Response surface analysis (RSA)
  • [10/10/2024] Text-Based Personality Assessment with LLM
  • [10/09/2024] Circular unidimensional scaling: A new look at group differences in interest structure.
  • [10/07/2024] Video Interview
  • [10/07/2024] Relationship between Measurement and ML
  • [10/07/2024] Conscientiousness × Interest Compensation (CONIC) model
  • [10/03/2024] Response modeling methodology
  • [10/02/2024] Conceptual Versus Empirical Distinctions Among Constructs
  • [10/02/2024] Construct Proliferation
  • [09/23/2024] Psychological Measurement Paradigm through Interactive Fiction Games
  • [09/20/2024] A Computational Method to Reveal Psychological Constructs From Text Data
  • [09/18/2024] H is for Human and How (Not) To Evaluate Qualitative Research in HCI
  • [09/17/2024] Automated Speech Recognition Bias in Personnel Selection
  • [09/16/2024] Congruency Effect
  • [09/11/2024] privacy, security, and trust perceptions
  • [09/10/2024] Measurement, Scale, Survey, Questionnaire
  • [09/09/2024] Reporting Systematic Reviews
  • [09/09/2024] Evolutionary Neuroscience
  • [09/09/2024] On Personality Measures and Their Data
  • [09/09/2024] Two Dimensions of Professor-Student Rapport Differentially Predict Student Success
  • [09/05/2024] The SAPA Personality Inventory
  • [09/05/2024] Moderated mediation
  • [09/03/2024] BiGGen Bench
  • [09/02/2024] LMSYS Chatbot Arena
  • [09/02/2024] Introduction to Measurement Theory Chapters 1, 2 (2.1-2.8) and 3.
  • [09/01/2024] HCI measurememt
  • [08/30/2024] Randomization Test
  • [08/30/2024] Interview Quantative Statistical
  • [08/29/2024] Cascading Model
  • [08/29/2024] Introduction: The White House (IS_202)
  • [08/29/2024] Circular unidimensional scaling
  • [08/28/2024] Sex and Gender Differences (Neur_542_Week2)
  • [08/26/2024] Workplace Assessment and Social Perceptions (WASP) Lab
  • [08/26/2024] Computational Organizational Research Lab
  • [08/26/2024] Reading List (Recommended by Bo)
  • [08/20/2024] Illinois NeuroBehavioral Assessment Laboratory (INBAL)
  • [08/14/2024] Quantitative text analysis
  • [08/14/2024] Measuring complex psychological and sociological constructs in large-scale text
  • [08/14/2024] LLM for Social Science Research
  • [08/14/2024] GPT for multilingual psychological text analysis
  • [08/12/2024] Questionable Measurement Practices and How to Avoid Them
  • [08/12/2024] NLP for Interest (from Dan Putka)
  • [08/12/2024] ONet Interest Profiler (Long and Short Scale)
  • [08/12/2024] ONet Interests Data
  • [08/12/2024] The O*NET-SOC Taxonomy
  • [08/12/2024] ML Ratings for O*Net
  • [08/09/2024] Limited ability of LLMs to simulate human psychological behaviours
  • [08/08/2024] A large-scale, gamified online assessment
  • [08/08/2024] Text-Based Traitand Cue Judgments
  • [08/07/2024] Chuan-Peng Lab
  • [08/07/2024] Modern psychometrics: The science of psychological assessment
  • [08/07/2024] Interactive Survey
  • [08/06/2024] Experimental History
  • [08/06/2024] O*NET Research reports
  • [07/30/2024] Creating a psychological assessment tool based on interactive storytelling
  • [07/24/2024] My Life with a Theory
  • [07/24/2024] NLP for Interest Job Ratings
  • [07/17/2024] Making vocational choices
  • [07/17/2024] Taxonomy of Psychological Situation
  • [07/12/2024] PathChat 2
  • [07/11/2024] Using games to understand the mind
  • [07/10/2024] Gamified Assessments
  • [07/09/2024] Poldracklab Software and Data
  • [07/09/2024] Consensus-based Recommendations for Machine-learning-based Science
  • [07/08/2024] Using AI to assess personal qualities
  • [07/08/2024] AI Psychometrics And Psychometrics Benchmark
  • [07/02/2024] Prompt Engineering Guide
  • [06/28/2024] Observational Methods and Qualitative Data Analysis 5-6
  • [06/28/2024] Observational Methods and Qualitative Data Analysis 3-4
  • [06/28/2024] Interviewing Methods 5-6
  • [06/28/2024] Interviewing Methods 3-4
  • [06/28/2024] What is Qualitative Research 3
  • [06/27/2024] APA Style
  • [06/27/2024] Statistics in Psychological Research 6
  • [06/27/2024] Statistics in Psychological Research 5
  • [06/23/2024] Bayesian Belief Network
  • [06/18/2024] Fair Comparisons in Heterogenous Systems Evaluation
  • [06/18/2024] What should we evaluate when we use technology in education?
  • [06/16/2024] Circumplex Model
  • [06/12/2024] Ways of Knowing in HCI
  • [06/09/2024] Statistics in Psychological Research 1-4
  • [06/08/2024] Mathematics for Machine Learning
  • [06/08/2024] Vocational Interests SETPOINT Dimensions
  • [06/07/2024] How's My PI Study
  • [06/06/2024] Best Practices in Supervised Machine Learning
  • [06/06/2024] SIOP
  • [06/06/2024] Measurement, Design, and Analysis: An Integrated Approach (Chu Recommended)
  • [06/06/2024] Classical Test Theory
  • [06/06/2024] Introduction to Measurement Theory (Bo Recommended)
  • [06/03/2024] EDSL: AI-Powered Research
  • [06/03/2024] Perceived Empathy of Technology Scale (PETS)
  • [06/02/2024] HCI area - Quantitative and Qualitative Modeling and Evaluation
  • [05/26/2024] Psychometrics with R
  • [05/26/2024] Programming Grammer Design
  • [05/25/2024] Psychometric Network Analysis
  • [05/23/2024] Item Response Theory
  • [05/22/2024] Nature Human Behaviour (Jan - 20 May, 2024)
  • [05/22/2024] Nature Human Behaviour - Navigating the AI Frontier
  • [05/22/2024] Computer Adaptive Testing
  • [05/22/2024] Personality Scale (Jim Shard)
  • [05/22/2024] Reliability
  • [05/19/2024] Chatbot (Jim Shared)
  • [05/17/2024] GOMS and Keystroke-Level Model
  • [05/17/2024] The Psychology of Human-Computer Interaction
  • [05/14/2024] Computational Narrative (Mark's Group)
  • [05/14/2024] Validity Coding
  • [05/14/2024] LLM as A Evaluator
  • [05/14/2024] Social Skill Training via LLMs (Diyi's Group)
  • [05/14/2024] AI Persona
  • [05/09/2024] Psychological Methods Journal Sample Articles
  • [05/08/2024] Meta-Analysis
  • [05/07/2024] Mturk
  • [05/06/2024] O*NET Reports and Documents
  • [05/04/2024] NLP and Chatbot on Personality Assessment (Tianjun)
  • [05/02/2024] Reads on Construct Validation
  • [04/25/2024] Reads on Validity
  • [04/18/2024] AI for Assessment
  • [04/17/2024] Interest Assessment
  • [04/16/2024] Personality Long Reading List (Jim)
    • Personality Psychology Overview
      • Why Study Personality Assessment
    • Dimensions and Types
    • Reliability
    • Traits: Two Views
    • Validity--Classical Articles and Reflections
    • Validity-Recent Proposals
    • Multimethod Perspective and Social Desirability
    • Paradigm of Personality Assessment: Multivariate
    • Heritability of personality traits
    • Classical Test-Construction
    • IRT
    • Social desirability in scale construction
    • Traits and culture
    • Paradigms of personality assessment: Empirical
    • Comparison of personality test construction strategies
    • Clinical versus Actuarial (AI) Judgement and Diagnostics
    • Decisions: Importance of base rates
    • Paradigms of Personality Assessment: Psychodynamic
    • Paradigms of Assessment: Interpersonal
    • Paradigms of Personality Assessment: Personological
    • Retrospective reports
    • Research Paradigms
    • Personality Continuity and Change
Powered by GitBook
On this page

[05/14/2024] Social Skill Training via LLMs (Diyi's Group)

Previous[05/14/2024] LLM as A EvaluatorNext[05/14/2024] AI Persona

Last updated 1 year ago

Rehearsal: Simulating Conflict to Teach Conflict Resolution

Abstract

Interpersonal conflict is an uncomfortable but unavoidable fact of life. Navigating conflict successfully is a skill -- one that can be learned through deliberate practice -- but few have access to effective training or feedback. To expand this access, we introduce Rehearsal, a system that allows users to rehearse conflicts with a believable simulated interlocutor, explore counterfactual "what if?" scenarios to identify alternative conversational paths, and learn through feedback on how and when to apply specific conflict strategies. Users can utilize Rehearsal to practice handling a variety of predefined conflict scenarios, from office disputes to relationship issues, or they can choose to create their own setting. To enable Rehearsal, we develop IRP prompting, a method of conditioning output of a large language model on the influential Interest-Rights-Power (IRP) theory from conflict resolution. Rehearsal uses IRP to generate utterances grounded in conflict resolution theory, guiding users towards counterfactual conflict resolution strategies that help de-escalate difficult conversations. In a between-subjects evaluation, 40 participants engaged in an actual conflict with a confederate after training. Compared to a control group with lecture material covering the same IRP theory, participants with simulated training from Rehearsal significantly improved their performance in the unaided conflict: they reduced their use of escalating competitive strategies by an average of 67%, while doubling their use of cooperative strategies. Overall, Rehearsal highlights the potential effectiveness of language models as tools for learning and practicing interpersonal skills.

Helping the Helper: Supporting Peer Counselors via AI-Empowered Practice and Feedback

Abstract

Millions of users come to online peer counseling platforms to seek support on diverse topics ranging from relationship stress to anxiety. However, studies show that online peer support groups are not always as effective as expected largely due to users’ negative experiences with unhelpful counselors. Peer counselors are key to the success of online peer counseling platforms, but most of them often do not have systematic ways to receive guidelines or supervision. In this work, we introduce CARE: an interactive AI-based tool to empower peer counselors through automatic suggestion generation. During the practical training stage, CARE helps diagnose which specific counseling strategies are most suitable in the given context and provides tailored example responses as suggestions. Counselors can choose to select, modify, or ignore any suggestion before replying to the support seeker. Building upon the Motivational Interviewing framework, CARE utilizes large-scale counseling conversation data together with advanced natural language generation techniques to achieve these functionalities. We demonstrate the efficacy of CARE by performing both quantitative evaluations and qualitative user studies through simulated chats and semi-structured interviews. We also find that CARE especially helps novice counselors respond better in challenging situations.

Social Skill Training with Large Language Models

Abstract

People rely on social skills like conflict resolution to communicate effectively and to thrive in both work and personal life. However, practice environments for social skills are typically out of reach for most people. How can we make social skill training more available, accessible, and inviting? Drawing upon interdisciplinary research from communication and psychology, this perspective paper identifies social skill barriers to enter specialized fields. Then we present a solution that leverages large language models for social skill training via a generic framework. Our AI Partner, AI Mentor framework merges experiential learning with realistic practice and tailored feedback. This work ultimately calls for cross-disciplinary innovation to address the broader implications for workforce development and social equality

Training socially aligned language models on simulated social interactions

Abstract

Social alignment in AI systems aims to ensure that these models behave according to established societal values. However, unlike humans, who derive consensus on value judgments through social interaction, current language models (LMs) are trained to rigidly replicate their training corpus in isolation, leading to subpar generalization in unfamiliar scenarios and vulnerability to adversarial attacks. This work presents a novel training paradigm that permits LMs to learn from simulated social interactions. In comparison to existing methodologies, our approach is considerably more scalable and efficient, demonstrating superior performance in alignment benchmarks and human evaluations. This paradigm shift in the training of LMs brings us a step closer to developing AI systems that can robustly and accurately reflect societal norms and values.

NormBank: A Knowledge Bank of Situational Social Norms

Abstract

We present NormBank, a knowledge bank of 155k situational norms. This resource is designed to ground flexible normative reasoning for interactive, assistive, and collaborative AI systems. Unlike prior commonsense resources, NormBank grounds each inference within a multivalent sociocultural frame, which includes the setting (e.g., restaurant), the agents' contingent roles (waiter, customer), their attributes (age, gender), and other physical, social, and cultural constraints (e.g., the temperature or the country of operation). In total, NormBank contains 63k unique constraints from a taxonomy that we introduce and iteratively refine here. Constraints then apply in different combinations to frame social norms. Under these manipulations, norms are non-monotonic - one can cancel an inference by updating its frame even slightly. Still, we find evidence that neural models can help reliably extend the scope and coverage of NormBank. We further demonstrate the utility of this resource with a series of transfer experiments.

Can Large Language Models Transform Computational Social Science?

Abstract

Large Language Models (LLMs) are capable of successfully performing many language processing tasks zero-shot (without training data). If zero-shot LLMs can also reliably classify and explain social phenomena like persuasiveness and political ideology, then LLMs could augment the Computational Social Science (CSS) pipeline in important ways. This work provides a road map for using LLMs as CSS tools. Towards this end, we contribute a set of prompting best practices and an extensive evaluation pipeline to measure the zero-shot performance of 13 language models on 25 representative English CSS benchmarks. On taxonomic labeling tasks (classification), LLMs fail to outperform the best fine-tuned models but still achieve fair levels of agreement with humans. On free-form coding tasks (generation), LLMs produce explanations that often exceed the quality of crowdworkers' gold references. We conclude that the performance of today's LLMs can augment the CSS research pipeline in two ways: (1) serving as zero-shot data annotators on human annotation teams, and (2) bootstrapping challenging creative generation tasks (e.g., explaining the underlying attributes of a text). In summary, LLMs are posed to meaningfully participate in social science analysis in partnership with humans.