😶‍🌫️
Psych
  • Preface
  • [4/9/2025] A One-Stop Calculator and Guide for 95 Effect-Size Variants
  • [4/9/2025] the people make the place
  • [4/9/2025] Personality predicts things
  • [3/31/2025] Response surface analysis with multilevel data
  • [3/11/2025] A Complete Guide to Natural Language Processing
  • [3/4/2025] Personality - Self and Identity
  • [3/1/2025] Updating Vocational Interests Information
  • [2/25/2025] Abilities & Skills
  • [2/22/2025] APA table format
  • [2/19/2025] LLM that replace human participants can harmfully misportray and flatt
  • [2/18/2025] Research Methods Knowledge Base
  • [2/17/2025] Personality - Motives/Interests
  • [2/11/2025] Trait structure
  • [2/10/2025] Higher-order construct
  • [2/4/2025] RL for CAT
  • [2/4/2025] DoWhy | An end-to-end library for causal inference
  • [2/4/2025] DAGitty — draw and analyze causal diagrams
  • [2/2/2025] Personality States
  • [2/2/2025] Psychometric Properties of Automated Video Interview Competency Assessments
  • [2/2/2025] How to diagnose abhorrent science
  • [1/28/2025] LLM and personality/interest items
  • [1/28/2025] Personality - Dispositions
  • [1/28/2025] Causal inference in statistics
  • [1/27/2025] Personality differences between birth order categories and across sibship sizes
  • [1/27/2025] nomological network meta-analysis.
  • [1/25/2025] Classic Papers on Scale Development/Validation
  • [1/17/2025] Personality Reading
  • [1/15/2025] Artificial Intelligence: Redefining the Future of Psychology
  • [1/13/2025] R for Psychometics
  • [12/24/2024] Comparison of interest congruence indices
  • [12/24/2024] Most recent article on interest fit measures
  • [12/24/2024] Grammatical Redundancy in Scales: Using the “ConGRe” Process to Create Better Measures
  • [12/24/2024] Confirmatory Factor Analysis with Word Embeddings
  • [12/24/2024] Can ChatGPT Develop a Psychometrically Sound Situational Judgment Test?
  • [12/24/2024] Using NLP to replace human content coders
  • [11/21/2024] AI Incident Database
  • [11/20/2024] Large Language Model-Enhanced Reinforcement Learning
  • [11/05/2024] Self-directed search
  • [11/04/2024] Interview coding and scoring
  • [11/04/2024] What if there were no personality factors?
  • [11/04/2024] BanditCAT and AutoIRT
  • [10/29/2024] LLM for Literature/Survey
  • [10/27/2024] Holland's Theory of Vocational Choice and Adjustment
  • [10/27/2024] Item Response Warehouse
  • [10/26/2024] EstCRM - the Samejima's Continuous IRT Model
  • [10/23/2024] Idiographic Personality Gaussian Process for Psychological Assessment
  • [10/23/2024] The experience sampling method (ESM)
  • [10/21/2024] Ecological Momentary Assessment (EMA)
  • [10/20/2024] Meta-Analytic Structural Equation Modeling
  • [10/20/2024] Structure of vocational interests
  • [10/17/2024] LLMs for psychological assessment
  • [10/16/2024] Can Deep Neural Networks Inform Theory?
  • [10/16/2024] Cognition & Decision Modeling Laboratory
  • [10/14/2024] Time-Invariant Confounders in Cross-Lagged Panel Models
  • [10/13/2024] Polynomial regression
  • [10/13/2024] Bayesian Mixture Modeling
  • [10/10/2024] Response surface analysis (RSA)
  • [10/10/2024] Text-Based Personality Assessment with LLM
  • [10/09/2024] Circular unidimensional scaling: A new look at group differences in interest structure.
  • [10/07/2024] Video Interview
  • [10/07/2024] Relationship between Measurement and ML
  • [10/07/2024] Conscientiousness × Interest Compensation (CONIC) model
  • [10/03/2024] Response modeling methodology
  • [10/02/2024] Conceptual Versus Empirical Distinctions Among Constructs
  • [10/02/2024] Construct Proliferation
  • [09/23/2024] Psychological Measurement Paradigm through Interactive Fiction Games
  • [09/20/2024] A Computational Method to Reveal Psychological Constructs From Text Data
  • [09/18/2024] H is for Human and How (Not) To Evaluate Qualitative Research in HCI
  • [09/17/2024] Automated Speech Recognition Bias in Personnel Selection
  • [09/16/2024] Congruency Effect
  • [09/11/2024] privacy, security, and trust perceptions
  • [09/10/2024] Measurement, Scale, Survey, Questionnaire
  • [09/09/2024] Reporting Systematic Reviews
  • [09/09/2024] Evolutionary Neuroscience
  • [09/09/2024] On Personality Measures and Their Data
  • [09/09/2024] Two Dimensions of Professor-Student Rapport Differentially Predict Student Success
  • [09/05/2024] The SAPA Personality Inventory
  • [09/05/2024] Moderated mediation
  • [09/03/2024] BiGGen Bench
  • [09/02/2024] LMSYS Chatbot Arena
  • [09/02/2024] Introduction to Measurement Theory Chapters 1, 2 (2.1-2.8) and 3.
  • [09/01/2024] HCI measurememt
  • [08/30/2024] Randomization Test
  • [08/30/2024] Interview Quantative Statistical
  • [08/29/2024] Cascading Model
  • [08/29/2024] Introduction: The White House (IS_202)
  • [08/29/2024] Circular unidimensional scaling
  • [08/28/2024] Sex and Gender Differences (Neur_542_Week2)
  • [08/26/2024] Workplace Assessment and Social Perceptions (WASP) Lab
  • [08/26/2024] Computational Organizational Research Lab
  • [08/26/2024] Reading List (Recommended by Bo)
  • [08/20/2024] Illinois NeuroBehavioral Assessment Laboratory (INBAL)
  • [08/14/2024] Quantitative text analysis
  • [08/14/2024] Measuring complex psychological and sociological constructs in large-scale text
  • [08/14/2024] LLM for Social Science Research
  • [08/14/2024] GPT for multilingual psychological text analysis
  • [08/12/2024] Questionable Measurement Practices and How to Avoid Them
  • [08/12/2024] NLP for Interest (from Dan Putka)
  • [08/12/2024] ONet Interest Profiler (Long and Short Scale)
  • [08/12/2024] ONet Interests Data
  • [08/12/2024] The O*NET-SOC Taxonomy
  • [08/12/2024] ML Ratings for O*Net
  • [08/09/2024] Limited ability of LLMs to simulate human psychological behaviours
  • [08/08/2024] A large-scale, gamified online assessment
  • [08/08/2024] Text-Based Traitand Cue Judgments
  • [08/07/2024] Chuan-Peng Lab
  • [08/07/2024] Modern psychometrics: The science of psychological assessment
  • [08/07/2024] Interactive Survey
  • [08/06/2024] Experimental History
  • [08/06/2024] O*NET Research reports
  • [07/30/2024] Creating a psychological assessment tool based on interactive storytelling
  • [07/24/2024] My Life with a Theory
  • [07/24/2024] NLP for Interest Job Ratings
  • [07/17/2024] Making vocational choices
  • [07/17/2024] Taxonomy of Psychological Situation
  • [07/12/2024] PathChat 2
  • [07/11/2024] Using games to understand the mind
  • [07/10/2024] Gamified Assessments
  • [07/09/2024] Poldracklab Software and Data
  • [07/09/2024] Consensus-based Recommendations for Machine-learning-based Science
  • [07/08/2024] Using AI to assess personal qualities
  • [07/08/2024] AI Psychometrics And Psychometrics Benchmark
  • [07/02/2024] Prompt Engineering Guide
  • [06/28/2024] Observational Methods and Qualitative Data Analysis 5-6
  • [06/28/2024] Observational Methods and Qualitative Data Analysis 3-4
  • [06/28/2024] Interviewing Methods 5-6
  • [06/28/2024] Interviewing Methods 3-4
  • [06/28/2024] What is Qualitative Research 3
  • [06/27/2024] APA Style
  • [06/27/2024] Statistics in Psychological Research 6
  • [06/27/2024] Statistics in Psychological Research 5
  • [06/23/2024] Bayesian Belief Network
  • [06/18/2024] Fair Comparisons in Heterogenous Systems Evaluation
  • [06/18/2024] What should we evaluate when we use technology in education?
  • [06/16/2024] Circumplex Model
  • [06/12/2024] Ways of Knowing in HCI
  • [06/09/2024] Statistics in Psychological Research 1-4
  • [06/08/2024] Mathematics for Machine Learning
  • [06/08/2024] Vocational Interests SETPOINT Dimensions
  • [06/07/2024] How's My PI Study
  • [06/06/2024] Best Practices in Supervised Machine Learning
  • [06/06/2024] SIOP
  • [06/06/2024] Measurement, Design, and Analysis: An Integrated Approach (Chu Recommended)
  • [06/06/2024] Classical Test Theory
  • [06/06/2024] Introduction to Measurement Theory (Bo Recommended)
  • [06/03/2024] EDSL: AI-Powered Research
  • [06/03/2024] Perceived Empathy of Technology Scale (PETS)
  • [06/02/2024] HCI area - Quantitative and Qualitative Modeling and Evaluation
  • [05/26/2024] Psychometrics with R
  • [05/26/2024] Programming Grammer Design
  • [05/25/2024] Psychometric Network Analysis
  • [05/23/2024] Item Response Theory
  • [05/22/2024] Nature Human Behaviour (Jan - 20 May, 2024)
  • [05/22/2024] Nature Human Behaviour - Navigating the AI Frontier
  • [05/22/2024] Computer Adaptive Testing
  • [05/22/2024] Personality Scale (Jim Shard)
  • [05/22/2024] Reliability
  • [05/19/2024] Chatbot (Jim Shared)
  • [05/17/2024] GOMS and Keystroke-Level Model
  • [05/17/2024] The Psychology of Human-Computer Interaction
  • [05/14/2024] Computational Narrative (Mark's Group)
  • [05/14/2024] Validity Coding
  • [05/14/2024] LLM as A Evaluator
  • [05/14/2024] Social Skill Training via LLMs (Diyi's Group)
  • [05/14/2024] AI Persona
  • [05/09/2024] Psychological Methods Journal Sample Articles
  • [05/08/2024] Meta-Analysis
  • [05/07/2024] Mturk
  • [05/06/2024] O*NET Reports and Documents
  • [05/04/2024] NLP and Chatbot on Personality Assessment (Tianjun)
  • [05/02/2024] Reads on Construct Validation
  • [04/25/2024] Reads on Validity
  • [04/18/2024] AI for Assessment
  • [04/17/2024] Interest Assessment
  • [04/16/2024] Personality Long Reading List (Jim)
    • Personality Psychology Overview
      • Why Study Personality Assessment
    • Dimensions and Types
    • Reliability
    • Traits: Two Views
    • Validity--Classical Articles and Reflections
    • Validity-Recent Proposals
    • Multimethod Perspective and Social Desirability
    • Paradigm of Personality Assessment: Multivariate
    • Heritability of personality traits
    • Classical Test-Construction
    • IRT
    • Social desirability in scale construction
    • Traits and culture
    • Paradigms of personality assessment: Empirical
    • Comparison of personality test construction strategies
    • Clinical versus Actuarial (AI) Judgement and Diagnostics
    • Decisions: Importance of base rates
    • Paradigms of Personality Assessment: Psychodynamic
    • Paradigms of Assessment: Interpersonal
    • Paradigms of Personality Assessment: Personological
    • Retrospective reports
    • Research Paradigms
    • Personality Continuity and Change
Powered by GitBook
On this page

[05/14/2024] Computational Narrative (Mark's Group)

Previous[05/17/2024] The Psychology of Human-Computer InteractionNext[05/14/2024] Validity Coding

Last updated 1 year ago

Creating Suspenseful Stories with Large Language Models

Proceedings of the 18th Annual Meeting of the European chapter of the Association for Computational Linguistics (EACL) (2024).

Abstract

Automated story generation has been one of the long-standing challenges in NLP. Among all dimensions of stories, suspense is very common in human-written stories but relatively underexplored in AI-generated stories. While recent advances in large language models (LLMs) have greatly promoted language generation in general, state-of-the-art LLMs are still unreliable when it comes to suspenseful story generation. We propose a novel iterative-promptingbased planning method that is grounded in two theoretical foundations of story suspense from cognitive psychology and narratology. This theory-grounded method works in a fully zeroshot manner and does not rely on any supervised story corpora. To the best of our knowledge, this paper is the first attempt at suspenseful story generation with LLMs. Extensive human evaluations of the generated suspenseful stories demonstrate the effectiveness of our method.

Few-Shot Dialogue Summarization via Skeleton-Assisted Prompt Transfer Proceedings of the 18th Annual Meeting of the European chapter of the Association for Computational Linguistics (EACL) (2024).

Abstract

In real-world scenarios, labeled samples for dialogue summarization are usually limited (i.e., few-shot) due to high annotation costs for high-quality dialogue summaries. To efficiently learn from few-shot samples, previous works have utilized massive annotated data from other downstream tasks and then performed prompt transfer in prompt tuning so as to enable cross-task knowledge transfer. However, existing general-purpose prompt transfer techniques lack consideration for dialogue-specific information. In this paper, we focus on improving the prompt transfer from dialogue state tracking to dialogue summarization and propose Skeleton-Assisted Prompt Transfer (SAPT), which leverages skeleton generation as extra supervision that functions as a medium connecting the distinct source and target task and resulting in the model's better consumption of dialogue state information. To automatically extract dialogue skeletons as supervised training data for skeleton generation, we design a novel approach with perturbation-based probes requiring neither annotation effort nor domain knowledge. Training the model on such skeletons can also help preserve model capability during prompt transfer. Our method significantly outperforms existing baselines. In-depth analyses demonstrate the effectiveness of our method in facilitating cross-task knowledge transfer in few-shot dialogue summarization.

Story Shaping: Teaching Agents Human-like Behavior with Stories Proceedings of the 2023 AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (2023).

Abstract

Reward design for reinforcement learning agents can be difficult in situations where one not only wants the agent to achieve some effect in the world but where one also cares about how that effect is achieved. For example, we might wish for an agent to adhere to a tacit understanding of commonsense, align itself to a preference for how to behave for purposes of safety, or taking on a particular role in an interactive game. Storytelling is a mode for communicating tacit procedural knowledge. We introduce a technique, Story Shaping, in which a reinforcement learning agent infers tacit knowledge from an exemplar story of how to accomplish a task and intrinsically rewards itself for performing actions that make its current environment adhere to that of the inferred story world. Specifically, Story Shaping infers a knowledge graph representation of the world state from observations, and also infers a knowledge graph from the exemplar story. An intrinsic reward is generated based on the similarity between the agent's inferred world state graph and the inferred story world graph. We conducted experiments in text-based games requiring commonsense reasoning and shaping the behaviors of agents as virtual game characters.

Dialogue Shaping: Empowering Agents through NPC Interaction Proceedings of the 2023 AAAI Workshop on Experimental AI in Games (2023).

Ambient Adventures: Teaching ChatGPT on Developing Complex Stories arXiv preprint arXiv:2308.01734 (2023).

Abstract

Imaginative play is an area of creativity that could allow robots to engage with the world around them in a much more personified way. Imaginary play can be seen as taking real objects and locations and using them as imaginary objects and locations in virtual scenarios. We adopted the story generation capability of large language models (LLMs) to obtain the stories used for imaginary play with human-written prompts. Those generated stories will be simplified and mapped into action sequences that can guide the agent in imaginary play. To evaluate whether the agent can successfully finish the imaginary play, we also designed a text adventure game to simulate a house as the playground for the agent to interact.

Thespian: Multi-Character Text Role-Playing Game Agents Proceedings of the 2023 AAAI Workshop on Experimental AI in Games (2023).

Abstrac

Text-adventure games and text role-playing games are grand challenges for reinforcement learning game playing agents. Text role-playing games are open-ended environments where an agent must faithfully play a particular character. We consider the distinction between characters and actors, where an actor agent has the ability to play multiple characters. We present a framework we call a thespian agent that can learn to emulate multiple characters along with a soft prompt that can be used to direct it as to which character to play at any time. We further describe an attention mechanism that allows the agent to learn new characters that are based on previously learned characters in a few-shot fashion. We show that our agent outperforms the state of the art agent framework in multi-character learning and few-shot learning.

Robust Preference Learning for Storytelling via Contrastive Reinforcement Learning arXiv preprint arXiv:2210.07792 (2022).

Abstract

Controlled automated story generation seeks to generate natural language stories satisfying constraints from natural language critiques or preferences. Existing methods to control for story preference utilize prompt engineering which is labor intensive and often inconsistent. They may also use logit-manipulation methods which require annotated datasets to exist for the desired attributes. To address these issues, we first train a contrastive bi-encoder model to align stories with corresponding human critiques, named CARP, building a general purpose preference model. This is subsequently used as a reward function to fine-tune a generative language model via reinforcement learning. However, simply fine-tuning a generative language model with a contrastive reward model does not always reliably result in a story generation system capable of generating stories that meet user preferences. To increase story generation robustness we further fine-tune the contrastive reward model using a prompt-learning technique. A human participant study is then conducted comparing generations from our full system, ablations, and two baselines. We show that the full fine-tuning pipeline results in a story generator preferred over a LLM 20x as large as well as logit-based methods. This motivates the use of contrastive learning for general purpose human preference modeling.

Social Construction of XAI: Do We Need One Definition to Rule Them All? Proceedings of the NeurIPS 2022 Workshop on Human-Centered AI (2022).

Abstract

There is a growing frustration amongst researchers and developers in Explainable AI (XAI) around the lack of consensus around what is meant by ‘explainability’. Do we need one definition of explainability to rule them all? In this paper, we argue why a singular definition of XAI is neither feasible nor desirable at this stage of XAI’s development. We view XAI through the lenses of Social Construction of Technology (SCOT) to explicate how diverse stakeholders (relevant social groups) have different interpretations (interpretative flexibility) that shape the meaning of XAI. Forcing a standardization (closure) on the pluralistic interpretations too early can stifle innovation and lead to premature conclusions. We share how we can leverage the pluralism to make progress in XAI without having to wait for a definitional consensus.

Machine Learning Approaches for Principle Prediction in Naturally Occurring Stories arXiv preprint arXiv:2212.06048 (2022).

Abstract

Value alignment is the task of creating autonomous systems whose values align with those of humans. Past work has shown that stories are a potentially rich source of information on human values; however, past work has been limited to considering values in a binary sense. In this work, we explore the use of machine learning models for the task of normative principle prediction on naturally occurring story data. To do this, we extend a dataset that has been previously used to train a binary normative classifier with annotations of moral principles. We then use this dataset to train a variety of machine learning models, evaluate these models and compare their results against humans who were asked to perform the same task. We show that while individual principles can be classified, the ambiguity of what "moral principles" represent, poses a challenge for both human participants and autonomous systems which are faced with the same task.

Neural Story Planning arXiv preprint arXiv:2212.08718 (2022).

Abstract

Automated plot generation is the challenge of generating a sequence of events that will be perceived by readers as the plot of a coherent story. Traditional symbolic planners plan a story from a goal state and guarantee logical causal plot coherence but rely on a library of hand-crafted actions with their preconditions and effects. This closed world setting limits the length and diversity of what symbolic planners can generate. On the other hand, pre-trained neural language models can generate stories with great diversity, while being generally incapable of ending a story in a specified manner and can have trouble maintaining coherence. In this paper, we present an approach to story plot generation that unifies causal planning with neural language models. We propose to use commonsense knowledge extracted from large language models to recursively expand a story plot in a backward chaining fashion. Specifically, our system infers the preconditions for events in the story and then events that will cause those conditions to become true. We performed automatic evaluation to measure narrative coherence as indicated by the ability to answer questions about whether different events in the story are causally related to other events. Results indicate that our proposed method produces more coherent plotlines than several strong baselines.

Guiding Neural Story Generation with Reader Models Findings of EMNLP 2022 (2022).

Abstract

Automated storytelling has long captured the attention of researchers for the ubiquity of narratives in everyday life. However, it is challenging to maintain coherence and stay on-topic toward a specific ending when generating narratives with neural language models. In this paper, we introduce Story generation with Reader Models (StoRM), a framework in which a reader model is used to reason about the story should progress. A reader model infers what a human reader believes about the concepts, entities, and relations about the fictional story world. We show how an explicit reader model represented as a knowledge graph affords story coherence and provides controllability in the form of achieving a given story world state goal. Experiments show that our model produces significantly more coherent and on-topic stories, outperforming baselines in dimensions including plot plausibility and staying on topic.

Situated Dialogue Learning through Procedural Environment Generation Proceedings of ACL 2022 (2022).

Inferring the Reader: Guiding Automated Story Generation with Commonsense Reasoning Findings of EMNLP 2022 (2022).

Abstract

Transformer-based language model approaches to automated story generation currently provide state-of-the-art results. However, they still suffer from plot incoherence when generating narratives over time, and critically lack basic commonsense reasoning. Furthermore, existing methods generally focus only on singlecharacter stories, or fail to track characters at all. To improve the coherence of generated narratives and to expand the scope of character-centric narrative generation, we introduce Commonsense-inference Augmented neural StoryTelling (CAST), 1 a framework for introducing commonsense reasoning into the generation process with the option to model the interaction between multiple characters. We find that our CAST method produces significantly more coherent, on-topic, enjoyable and fluent stories than existing models in both the single-character and two-character settings in three storytelling domains.