[05/14/2024] Computational Narrative (Mark's Group)
Last updated
Last updated
Creating Suspenseful Stories with Large Language Models
Proceedings of the 18th Annual Meeting of the European chapter of the Association for Computational Linguistics (EACL) (2024).
Abstract
Automated story generation has been one of the long-standing challenges in NLP. Among all dimensions of stories, suspense is very common in human-written stories but relatively underexplored in AI-generated stories. While recent advances in large language models (LLMs) have greatly promoted language generation in general, state-of-the-art LLMs are still unreliable when it comes to suspenseful story generation. We propose a novel iterative-promptingbased planning method that is grounded in two theoretical foundations of story suspense from cognitive psychology and narratology. This theory-grounded method works in a fully zeroshot manner and does not rely on any supervised story corpora. To the best of our knowledge, this paper is the first attempt at suspenseful story generation with LLMs. Extensive human evaluations of the generated suspenseful stories demonstrate the effectiveness of our method.
Few-Shot Dialogue Summarization via Skeleton-Assisted Prompt Transfer Proceedings of the 18th Annual Meeting of the European chapter of the Association for Computational Linguistics (EACL) (2024).
Abstract
In real-world scenarios, labeled samples for dialogue summarization are usually limited (i.e., few-shot) due to high annotation costs for high-quality dialogue summaries. To efficiently learn from few-shot samples, previous works have utilized massive annotated data from other downstream tasks and then performed prompt transfer in prompt tuning so as to enable cross-task knowledge transfer. However, existing general-purpose prompt transfer techniques lack consideration for dialogue-specific information. In this paper, we focus on improving the prompt transfer from dialogue state tracking to dialogue summarization and propose Skeleton-Assisted Prompt Transfer (SAPT), which leverages skeleton generation as extra supervision that functions as a medium connecting the distinct source and target task and resulting in the model's better consumption of dialogue state information. To automatically extract dialogue skeletons as supervised training data for skeleton generation, we design a novel approach with perturbation-based probes requiring neither annotation effort nor domain knowledge. Training the model on such skeletons can also help preserve model capability during prompt transfer. Our method significantly outperforms existing baselines. In-depth analyses demonstrate the effectiveness of our method in facilitating cross-task knowledge transfer in few-shot dialogue summarization.
Story Shaping: Teaching Agents Human-like Behavior with Stories Proceedings of the 2023 AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (2023).
Abstract
Reward design for reinforcement learning agents can be difficult in situations where one not only wants the agent to achieve some effect in the world but where one also cares about how that effect is achieved. For example, we might wish for an agent to adhere to a tacit understanding of commonsense, align itself to a preference for how to behave for purposes of safety, or taking on a particular role in an interactive game. Storytelling is a mode for communicating tacit procedural knowledge. We introduce a technique, Story Shaping, in which a reinforcement learning agent infers tacit knowledge from an exemplar story of how to accomplish a task and intrinsically rewards itself for performing actions that make its current environment adhere to that of the inferred story world. Specifically, Story Shaping infers a knowledge graph representation of the world state from observations, and also infers a knowledge graph from the exemplar story. An intrinsic reward is generated based on the similarity between the agent's inferred world state graph and the inferred story world graph. We conducted experiments in text-based games requiring commonsense reasoning and shaping the behaviors of agents as virtual game characters.
Dialogue Shaping: Empowering Agents through NPC Interaction Proceedings of the 2023 AAAI Workshop on Experimental AI in Games (2023).
Ambient Adventures: Teaching ChatGPT on Developing Complex Stories arXiv preprint arXiv:2308.01734 (2023).
Abstract
Imaginative play is an area of creativity that could allow robots to engage with the world around them in a much more personified way. Imaginary play can be seen as taking real objects and locations and using them as imaginary objects and locations in virtual scenarios. We adopted the story generation capability of large language models (LLMs) to obtain the stories used for imaginary play with human-written prompts. Those generated stories will be simplified and mapped into action sequences that can guide the agent in imaginary play. To evaluate whether the agent can successfully finish the imaginary play, we also designed a text adventure game to simulate a house as the playground for the agent to interact.
Thespian: Multi-Character Text Role-Playing Game Agents Proceedings of the 2023 AAAI Workshop on Experimental AI in Games (2023).
Abstrac
Text-adventure games and text role-playing games are grand challenges for reinforcement learning game playing agents. Text role-playing games are open-ended environments where an agent must faithfully play a particular character. We consider the distinction between characters and actors, where an actor agent has the ability to play multiple characters. We present a framework we call a thespian agent that can learn to emulate multiple characters along with a soft prompt that can be used to direct it as to which character to play at any time. We further describe an attention mechanism that allows the agent to learn new characters that are based on previously learned characters in a few-shot fashion. We show that our agent outperforms the state of the art agent framework in multi-character learning and few-shot learning.
Robust Preference Learning for Storytelling via Contrastive Reinforcement Learning arXiv preprint arXiv:2210.07792 (2022).
Abstract
Controlled automated story generation seeks to generate natural language stories satisfying constraints from natural language critiques or preferences. Existing methods to control for story preference utilize prompt engineering which is labor intensive and often inconsistent. They may also use logit-manipulation methods which require annotated datasets to exist for the desired attributes. To address these issues, we first train a contrastive bi-encoder model to align stories with corresponding human critiques, named CARP, building a general purpose preference model. This is subsequently used as a reward function to fine-tune a generative language model via reinforcement learning. However, simply fine-tuning a generative language model with a contrastive reward model does not always reliably result in a story generation system capable of generating stories that meet user preferences. To increase story generation robustness we further fine-tune the contrastive reward model using a prompt-learning technique. A human participant study is then conducted comparing generations from our full system, ablations, and two baselines. We show that the full fine-tuning pipeline results in a story generator preferred over a LLM 20x as large as well as logit-based methods. This motivates the use of contrastive learning for general purpose human preference modeling.
Social Construction of XAI: Do We Need One Definition to Rule Them All? Proceedings of the NeurIPS 2022 Workshop on Human-Centered AI (2022).
Abstract
There is a growing frustration amongst researchers and developers in Explainable AI (XAI) around the lack of consensus around what is meant by ‘explainability’. Do we need one definition of explainability to rule them all? In this paper, we argue why a singular definition of XAI is neither feasible nor desirable at this stage of XAI’s development. We view XAI through the lenses of Social Construction of Technology (SCOT) to explicate how diverse stakeholders (relevant social groups) have different interpretations (interpretative flexibility) that shape the meaning of XAI. Forcing a standardization (closure) on the pluralistic interpretations too early can stifle innovation and lead to premature conclusions. We share how we can leverage the pluralism to make progress in XAI without having to wait for a definitional consensus.
Machine Learning Approaches for Principle Prediction in Naturally Occurring Stories arXiv preprint arXiv:2212.06048 (2022).
Abstract
Value alignment is the task of creating autonomous systems whose values align with those of humans. Past work has shown that stories are a potentially rich source of information on human values; however, past work has been limited to considering values in a binary sense. In this work, we explore the use of machine learning models for the task of normative principle prediction on naturally occurring story data. To do this, we extend a dataset that has been previously used to train a binary normative classifier with annotations of moral principles. We then use this dataset to train a variety of machine learning models, evaluate these models and compare their results against humans who were asked to perform the same task. We show that while individual principles can be classified, the ambiguity of what "moral principles" represent, poses a challenge for both human participants and autonomous systems which are faced with the same task.
Neural Story Planning arXiv preprint arXiv:2212.08718 (2022).
Abstract
Automated plot generation is the challenge of generating a sequence of events that will be perceived by readers as the plot of a coherent story. Traditional symbolic planners plan a story from a goal state and guarantee logical causal plot coherence but rely on a library of hand-crafted actions with their preconditions and effects. This closed world setting limits the length and diversity of what symbolic planners can generate. On the other hand, pre-trained neural language models can generate stories with great diversity, while being generally incapable of ending a story in a specified manner and can have trouble maintaining coherence. In this paper, we present an approach to story plot generation that unifies causal planning with neural language models. We propose to use commonsense knowledge extracted from large language models to recursively expand a story plot in a backward chaining fashion. Specifically, our system infers the preconditions for events in the story and then events that will cause those conditions to become true. We performed automatic evaluation to measure narrative coherence as indicated by the ability to answer questions about whether different events in the story are causally related to other events. Results indicate that our proposed method produces more coherent plotlines than several strong baselines.
Guiding Neural Story Generation with Reader Models Findings of EMNLP 2022 (2022).
Abstract
Automated storytelling has long captured the attention of researchers for the ubiquity of narratives in everyday life. However, it is challenging to maintain coherence and stay on-topic toward a specific ending when generating narratives with neural language models. In this paper, we introduce Story generation with Reader Models (StoRM), a framework in which a reader model is used to reason about the story should progress. A reader model infers what a human reader believes about the concepts, entities, and relations about the fictional story world. We show how an explicit reader model represented as a knowledge graph affords story coherence and provides controllability in the form of achieving a given story world state goal. Experiments show that our model produces significantly more coherent and on-topic stories, outperforming baselines in dimensions including plot plausibility and staying on topic.
Situated Dialogue Learning through Procedural Environment Generation Proceedings of ACL 2022 (2022).
Inferring the Reader: Guiding Automated Story Generation with Commonsense Reasoning Findings of EMNLP 2022 (2022).
Abstract
Transformer-based language model approaches to automated story generation currently provide state-of-the-art results. However, they still suffer from plot incoherence when generating narratives over time, and critically lack basic commonsense reasoning. Furthermore, existing methods generally focus only on singlecharacter stories, or fail to track characters at all. To improve the coherence of generated narratives and to expand the scope of character-centric narrative generation, we introduce Commonsense-inference Augmented neural StoryTelling (CAST), 1 a framework for introducing commonsense reasoning into the generation process with the option to model the interaction between multiple characters. We find that our CAST method produces significantly more coherent, on-topic, enjoyable and fluent stories than existing models in both the single-character and two-character settings in three storytelling domains.